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The evolution of a shear flow with an imbedded streamwise vortex is considered. An 
idealized model for the vortical structure is used; the vortex is assumed to  be of 
infinite extent in the stream direction, and to be a potential vortex (vortex filament) 
turned on a t  time zero, and subsequently allowed to diffuse under the action of 
viscosity. The ambient flow is taken to be, initially, a linear shear profile; the flow 
then evolves under the joint action of viscosity and convection induced by the vortex. 
Boundaries are assumed to be infinitely removed from the vortex core. A similarity 
variable is found which reduces the equation for the induced streamwise velocity 
perturbation to an ordinary differential equation, which is easily solved numerically. 
The vortex Reynolds number, circulation/viscosity, is found to be of prime impor- 
tance. Calculated velocity profiles are presented. 

1. Introduction 
Many observers have noted the presence of streamwise vortical structures in the 

buffer region of the turbulent boundary layer; representative papers are Kim, Kline 
& Reynolds (1971) and Blackwelder & Eckelmann (1979). Associated with these 
structures are low-speed ‘streaks ’, which have been the subject of intensive experi- 
mental scrutiny; a review article by Willmarth (1975) references many of the 
investigations. Experimental study of boundary-layer transition from laminar to 
turbulent character (Klebanoff, Tidstrom & Sargent 1962) has given evidence of the 
association of streamwise vorticity with this process as well; theory (Benney 1961) 
has shown that growth of mean streamwise vorticity is associated with the nonlinear 
terms in the form of the Navier-Stokes equations appropriate for a propagating 
three-dimensional shear wave. 

Given the interest in these structures, and their potential relevance to observed 
phenomena in turbulent boundary layers, it is of some interest to obtain a description 
of the flow field associated with one of these structures in the absence of any other 
perturbations to an equilibrium flow field. It turns out that, within the constraints 
of a few simplifying assumptions, an exact solution of the full Navier-Stokes 
equations is obtainable in the form of a similarity solution; these assumptions and 
their implications will form the body of this paper. 

2. Assumptions 
I n  any effort directed a t  the analytical solution of the full Navier-Stokes equations, 

certain idealizations must be made. For the purposes of this paper, i t  is assumed that, 
at time zero, there is no variation of any flow parameter in the 2 (streamwise) 
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direction ; it  then follows that there is no x-dependence of any flow parameter a t  any 
future time. 

Although not rigorously true in any real flow, i t  is certainly clear from experimental 
investigations that the streamwise vortical structures are essentially aligned with the 
flow, and are of very great extent in the streamwise direction; hence it does not seem 
unreasonable to neglect variations in this direction compared with other terms in the 
Navier-Stokes equations. 

A second assumption is that  the undisturbed flow is of the form U ( y )  = U, + Icy, 
where U, is the velocity at the centre of the vortex, and lc is the local shear. Of course, 
this is only the first-order Taylor-series expansion of the ambient velocity profile 
about the centreline of the vortex; hence the range of validity for the solution can 
be no greater than the range of validity of this approximation. 

It is further assumed that all solid boundaries are infinitely removed from the 
centreline of the vortex. This assumption is necessary in order for there to be a 
similarity solution; on the other hand, if the velocities implied by the model are 
significant a t  the position of the (real) wall, then the presence of the wall may alter 
the flow evolution significantly. Clearly, in any attempt to apply the results presented 
below to a real flow, the effects of the wall must be somehow estimated in order to 
establish whether or not this approximation is valid. It is the opinion of the authors 
that, despite this limitation, the model and its implications are nevertheless of some 
value. 

A final assumption concerns the velocity field a t  time zero, associated with the 
vortical structure. For the purposes of this paper, the structure is taken to  be a 
potential vortex filament, inserted into the flow a t  timc zero, which is allowed 
subsequently to undergo viscous diffusion. The modelling of the vortex structure as 
a vortex filament (i.e. assuming a l / ~  tangential velocity dependence) is not 
uncommon; however, we note in passing that Taylor (1916) proposed a different 
model for the tangential velocity distribution, which exhibits exponential (rather 
than l /r)  decay as r+co. Due to the frequency with which it is appealed to in the 
literature, we shall be concerned in this paper only with the vortex-filament model; 
although the Taylor model is also of some interest, i t  is not amenable to the technique 
presented below for the filament model, and hence will not be considered further here. 

3. Analysis 
We are concerned with finding the solution [u (y ,  z ,  t )  ; v(y, z ,  t )  ; w ( y ,  z ,  t ) ]  which 

satisfies the incompressible viscous Navier-Stokes equations. In  index notation, with 
[u = u l ;  v = u z ;  w = u,] corresponding to the x, y and z velocity components 
respectively, they are 

1 
u ~ , ~ + u ~ , ~ u ~ = - - - P  . + v A u ~ ,  ( 1 )  

P ,a 

where commas denote partial differentiation, and Aui is the Laplacian of ui in y and 
z .  The flow geometry is shown in figure 1 .  

Letting primed quantities represent the disturbance to the ambient flow associated 
with the presence of the vortex, with capitalized quantities representing the ambient 
(initial) flow field, we have ui = ui+ Ui. The initial velocity field is taken to  be 

U, = U,+ky, u, = u, = 0, ( 2 )  

where, as stated in $2, U, is the velocity a t  the centreline of the vortex, and k is the 
local shear. 
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L 

FIauRE 1 .  Assumed initial flow field U = U,, + ky. 

Incompressibility requires 
= 0, (3) 

which, for the assumed form for the Ui, requires 

(4) u: . = 0. 

By assumption there is no x-dependence in the problem; and as the ambient flow 
field (2) satisfies ( 1 )  and (3) exactly, the equations for the perturbation velocity field 
become 

a ,  

u:, + ( u : ~  + lc) v‘ + u : ~  w’ = v Au‘, 

v ~ ~ + v ~ ~ v ’ + v : ~ w ’  = VAV’- -P:~ ,  ( 6 a )  

(5) 
1 

P 

1 

P 
w : ~  + w : ~  V‘ i- w : ~  W‘ = v Aw‘ - - P : ~ ,  ( 6 b )  

v;y+Ww:z = 0. (6,) 

It is evident that (5) and (6) are decoupled, which may a t  first seem surprising. 
However, the decoupling is a consequence of the assumed lack of x-dependence in 
the problem; without x-dependence there can be no net convection of any flow 
variable in the x-direction. Therefore neither the unperturbed velocity U,  nor the 
perturbation streamwise velocity u’ appear in the convective terms in (6). It is 
perhaps useful to note that this decoupling is independent of the assumed form for 
U,(y) (or, more generally, U,(y, 2)); thus, given a flow field (v’, w’) that  satisfies (6), 
and boundary conditions, the perturbation streamwise velocity u’ may be obtained 
from 

(7)  ult + (ury + U,,y) V’ + (urz + U,,z) W’ = v Au’. 

This is a linear partial differential equation in the unknown u‘; for U ,  = U,+ ky (7)  
reduces to (5). 
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Solution of set (6) 
We are, for the purposes of this discussion, assuming that the vortical structure is 
a potential vortex turned on at time zero, which subsequently undergoes viscous 
diffusion. We further assume that the boundaries are infinitely removed from the 
filament. Since the problem evidently exhibits axial symmetry (no angular depend- 
ence), it  is convenient to solve the set (6) in polar coordinates: we define 

r = radial coordinate, 

8 5 angular coordinate, 

g‘ 5 radial velocity, 

h’ = tangential velocity, 

8’ = streamwise vorticity, 

Continuity requires 
i a  i a  
r ar r ae - - ( rg ’ )  +- - (h’) = 0, 

which, with axial symmetry, implies 

rg‘ = C ;  

boundedness as r+O then requires C = 0, which gives 

g1 = 0.  

The streamwise vorticity, in terms of 9’ and h’, is 

and satisfies the equationt 

which in this case reduces to 

. ( l la)  

which is the radial diffusion equation. For a filament turned on at time zero the 
appropriate initial condition is 

where r is the circulation associated with the vortex, and S(r )  is the Dirac delta 
function. 

t The vortex stretching and tilting terms which would normally appear on the right-hand side 
of (10) can be seen to have zero net contribution as follows. If ~’ = ag‘/ax-au’/ar = tangential 
vorticity, and#‘ = ( l / r )  au’/aO-ah’/as = radialvorticity, thentheright-handsideofthestreamwise 
vorticity equation should have the additional terms &’au’/ax +#‘au‘/ar + ($‘/r) au’/aO. For no 
x-variation we obtain #’ = (l/r)au‘/ae, yY = -au’/ar and i3b’lax = 0; hence the surviving terms 
#’ au’/ar + (1 /r) I@’ au‘/aO = 0 identically. Note that axial symmetry is not required for this result. 
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FIGURE 2.  Tangential velocity field for a vortex with vortex R = r/2nv = 1 at various dimensionless 
times; p G r / ( v / k ) i ,  7 = kt. 7 increases from left to right; 7 = 0.05, 0.1, 0.2, 0.4. 

The solution to the set (11)  is the Oseen vortex 

2 

g’(r, t )  = -exp( r -2) 4VXt 4 v t  ’ 

with associated tangential velocity field 

h’(r,t) = r ( i - e x p ( - & ) ) ,  27cr 

which is obtained by substituting (12) into (9) and integrating; a plot of h‘(r, t )  for 
various values of t and a particular r, suitably non-dimensionalized as described 
below, is presented in figure 2. 

We now have in hand a complete solution to the set (6) ; it  remains only to utilize 
this solution to generate the solution u’(y,  z ,  t )  to (5 ) .  

Equation ( 5 )  is also best considered in polar coordinates ; in these coordinates the 
equation is 

( 1 4 )  urt +- h’ (U+u’), ,  = v (u:rr+;u:r+-u:@o), I 
1 

r r2 

where h‘ is given by (13), and use has been made of the fact that there is no radial 
component of velocity. 
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It is convenient to non-dimensionalize (14) ; since the boundaries are infinitely 
removed from the vortex centreline there is no imposed physical lengthscale. There 
is, however, a characteristic time T = l / k  associated with the local shear dUJdy = k ;  
a viscous lengthscale is then L = ( v / k ) : .  The characteristic velocity is then V = (vk):. 

= dimensionless 
ambient velocity ; p = dimensionless radial displacement and T = dimensionless 
time, we obtain 

Setting U = non-dimensional streamwise perturbation velocity ; 

In  the non-dimensionalization the ambient velocity becomes 

8= U,+p sine. 

Clearly the only parameter appearing in (15) is the ratio I‘/2nv, a measure of the 
relative importance of circulation (convection) and viscous effects in the flow 
evolution. This can be thought of as a Reynolds number for the problem; in the 
subsequent discussion it is referred to as the vortex Reynolds number R. 

Using the assumed form for 0, we obtain 

The perturbation velocity must be initially zero everywhere, since the vortex is 
‘turned on ’ at time zero ; furthermore, symmetry considerations require that there 
be no streamwise velocity perturbation a t  the vortex core ( r  = 0). Finally, there can 
be no perturbation streamwise velocity a t  infinity; these considerations lead to the 
boundary conditions 

U ( O , O ,  7) = 0, U(00,8,7) = 0, U(p,  0 , O )  = 0. (16b) 

This is a well-posed problem of the diffusion type; it is soluble in a rather 
straightforward way numerically, marching forward in time, and in fact this was the 
approach we adopted initially. 

Fortunately a more illuminating approach is available ; this consists of defining 

Pf(P, @,7) = q p ,  @,7). (17a)  

It turns out that  f ( p ,  8 , ~ )  is expressible as f (7 ,e)  only, where the similarity variable 
7 = p2/47. Furthermore, it is possible to write 

f (7 ,e )  = Re ( F ( 7 )  eiT; (17b)  

these transformations then reduce the linear partial differential equation (16a) to the 
solution of a linear ordinary differential equation, with complex coefficients, in the 
similarity variable 7. 

After substitution and rearrangement, (16) becomes 

472F” + (4q2 + 87) F’ -iR(1 -exp ( -7)) F = R( 1 -exp ( - v ) ) .  (18) 

Although not evidently representable in terms of known functions, the (complex) 
solution F(7)  can be obtained numerically with relative ease (e.g. by finite differences) 
once the boundary conditions a t  7 = 0 and 71 = 00, corresponding to ( 1 6 b ) ,  can be 
found. 
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The boundary conditions on F(7)  require a bit of care, since they are to be imposed 
a t  7 = 0 (a regular singular point of (18)) and a t  7 = 00 (an irregular singular point 
of (18)). Near 7 = 0, there is guaranteed to be a t  least one homogeneous solution of 
the form 

~ i h )  = ( j0 aj Ti) ; (19) 

substituting in the assumed form into the homogeneous counterpart to (18) gives 

a1 = 0, az = - 1  

as the potential solutions. Since these roots differ by an integer, we are only assured 
of a solution of the form (19) for the larger value al; a second independent 
homogeneous solution has the form 

m 

A particular solution to  (18) near 7 = 0 is obtained by expanding the exponential 
terms which appear in powers of 7 ; we find that there also exists a particular solution 
of Taylor-series form. Requiring that the solution F(7)  to (18) be bounded at  the origin 
(note that if F ( 7 )  is bounded, then Ulp=o = p[Re (Feie) 1 7 = o ]  = 0) we are justified in 
seeking a full solution of the form 

00 

F(7) = x C j 7 j  
j=O 

Substituting this form into (18) directly, the resulting recursion relationship for 
the ck is 

1 
4 k ( k +  1) c k + 4 ( k -  1 )  ck-,+iR E cn( - l)k-n ~ 

( k - n ) !  

k-1 

n=1 

( -  l ) k + l  
= R(l  +ice) ( k  3 1 ) .  (21) k !  

Nobe that, while c,, is arbitrary, for any given co the remaining coefficients are 
completely determined ; in particular 

c1 = iR(l+ico).  P 2 a )  

Thus the requirement that F(7 = 0) be bounded yields a unique relationship between 

For the point a t  infinity, in order to have U = p R e  (Fe'O) go to zero, F(7) must 
decay faster than = 2&/p) .  To show that this in fact imposes a constraint on the 
system, i t  is necessary to consider the asymptotic behaviour of F as r-tco. 
Representing F as a sum of particular and homogeneous solutions asymptotically 
valid as 7+m, 

F - FP(7)+dlFLh)(7)+dzF$)(7)  as y+m, 

where FLh) and Fib) are linearly independent asymptotic homogeneous solutions to 
(18). It is not difficult to show that 

FI,=, and dFld7l,=,. 
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Vortex Reynolds number 

FIGURE 3. Plot of (dimensionless) IV(ii+ C7)l = S(R,v  = 0) in ‘core’ region of vortex (y+O) 
against vortex Reynolds number; a( i i+  g)/ayIs=o and a(%+ u)/i3zI,=, are also plotted. 

are allowable choices for the particular solution and the two independent homogeneous 
solutions respectively. The requirement that  F decay sufficiently rapidly as 7 +co is 
thus seen to be equivalent to the requirement that  there be no contribution from the 
Fib) function to  the complete solution F ;  hence, requiring F+O as y+co does indeed 
provide the second constraint (in addition to (22a)  needed to uniquely determine a 
solution to (18). To recapitulate : the non-dimensional perturbation velocity U that 
exactly solves (16) - and hence the full Navier-Stokes equations - is 

U = Re ( p F ( 7 )  eiB), 

where F(7)  is the unique solution to 

472F” + (4y2 + 87) 3”-iR( 1 -exp ( -7)) F = R( 1 - exp ( -y)), 

with boundary conditions 
F’(O)-@iF(O)  = BR, 

F(co) = 0. 

I n  the numerical solution, the semi-infinite domain 0 < 7 < co is mapped into 
0 < x < 1 via the transformation x = q / ( ~  + 1) ; this makes the condition a t  infinity 
somewhat easier to impose. 

A few comments on the solutions associated with these equations are in order. 
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FIGURE 4. Plot of dimensionless perturbation streamwise velocity ii = u' / (vk) i  against spanwise 
position Z' = z / ( v / k ) t ,  for vortex R = 1 ,  3, 5 ,  6.5, 8, a t  dimensionless time T = kt = 0.1, and y+ = 0. 

Since as T +a, 7 + 0 for any fixed radial position p, we have 

lim U(p,  8 , ~ )  = Re [pF(O) eie] 
7x72 

= Re(P(0)) p cos8-ImF(0))p sin8 

= Re (F(0 ) )  ( -  z+) - Im (P(0))  y+, 

where z+ = dimensionless spanwise position E z ( k / v ) :  and y+ = y ( k / v ) : .  
I n  other words, tha effect of the vortex is to establish a new equilibrium shear profile 

within a 'core' region, the radial extent of which scales with i-f. I n  fact, the total 
(dimensionless) velocity field inside the core region is, with 

Cc) = Im(P(0))  and Cr) =Re(F(O)),  l i m u + G =  ( l - C ~ ) ) y + - C ~ ) z + .  (23) 

A measure of the mixing associated with the presence of the vortex is the quantity 
7+0 

where R is the vortex Reynolds number, and hence 

S(R)  = [ (1-C~))2+(C$))2]~ 

inside the core region. 
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FIGURE 5. Plot of dimensionless streamwise velocity (ambient + perturbation) U+ 0 against 
cross-stream position y+ = y / ( v / k ) a ,  for vortex R = 1, 3, 5, 6.5, 8 and 10, a t  7 = 0.2, and z+ = 0. 
R = 1 is essentially indistinguishable from the unperturbed (R = 0) profile. 

Here, of course, S(R)  is the magnitude of the (dimensionless) gradient in the core 
(q + 1 )  region; the unperturbed flow (7 = 0) has a dimensionless gradient of magnitude 
1 .  A plot of S(R)  is given in figure 3 ; note that as R +KC, A"+ 0, indicating that, for 
large R, there is essentially complete mixing. 

Another interesting feature of these equations is the catastrophic effect of the 
vortex on theambient profile, evenat modest vortex Reynoldsnumbers. Instantaneous 
profiles for the total streamwise velocity U + 0 along the y+ coordinate axis, and for 
the perturbation velocity U along the z+ coordinate axis, are presented for a range 
of vortex Reynolds numbers in figures 4 and 5 ; profiles along the y+ axis for a specific 
vortex Reynolds number (R = 5 )  a t  various values of dimensionless time are 
displayed in figure 6. The severity of the inflection in the streamwise velocity profile 
even a t  a vortex R = 10 (which implies a dimensional circulation of 0.6 cm2/s for 
water) is truly remarkable. 

4. Discussion 
The simplicity of the results presented in 3 3, and the obvious physical interpretations 

of the results, is clearly an attractive feature. The model yields a revealing picture 
of the physical balances inside a streamwise diffusing vortex; the primary effect of 
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FIGURE 6. Plot of dimensionless stream velocity ?if oagainst cross-stream position y+, for vortex 
R = 5 ,  a t  7 = 0.1,0.2,0.4 and 0.8, and z+ = 0. Note temporal development of (locally) linear ‘core’ 
region. 

the vortex is to redistribute momentum between regions of high and low momentum 
(respectively above and below the centreline). Mitigating this effect are the viscous 
forces; these lead to the re-establishment of a (locally) linear shear flow, but with 
reduced total shear S = (Vul. It is also interesting to note that the predictions of 
streamwise velocity perturbations associated with vortices of known circulation gives 
one a potentially useful inverse method for finding a characteristic vortex strength 
associated with measured perturbations to the streamwise velocity ; for slowly 
spinning structures this could well prove to be a more sensitive technique than direct 
measurement, where noise can become a significant problem. 

Of course, this new shear profile is steady state only in the absence of external forces, 
such as a pressure gradient in the stream direction; the presence of the pressure 
gradient would work to re-establish the original equilibrium profile. It is important 
to emphasize that in the model presented here the flow will not return to its original 
equilibrium state; there is no restoring force in this model. However, in the presence 
of a body force or pressure force, the above results would still be valid for sufficiently 
small values of time and radial displacement; this is because the vortex must 
‘disequilibrate’ the flow before restoring forces can begin to push the flow back 
towards equilibrium. 

Since the solution is a similarity solution, restricting the validity of the solution 
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in this way in no way changes the basic result, which is the development of kinked 
velocity profiles in response to the presence of the vortex; one would expect, however, 
that  the similarity solution would become a poor approximation as the integrated 
acceleration due to external force imbalances becomes appreciable, i.e. as time 
becomes large. 

The restriction to small radial displacements arises similarly from deviations in a 
real flow field from the conditions assumed in the model, e.g. the presence of walls 
and nonlinear mean-velocity profiles. We argue that these effects will also be 
negligible for small r and t ,  as the velocity profile will be approximately linear in r 
about the vortex core, and the walls will only communicate their presence on some 
diffusive timescale. 

It therefore seems eminently plausible that the model yields correct predictions for 
the small-r small-t regime; it remains to consider the dynamical instabilities in the 
velocity profile induced by the vortex. Although the calculations presented in $ 3  
yield an exact time-dependent solution to  the Navier-Stokes equations, i t  may well 
be that slight imperfections in the ambient flow, or deviations from the assumptions 
in the model, might induce exponential divergence from the calculated solution, To 
answer this question, one must perform the full three-dimensional stability of the 
two-dimensional time-dependent flow field ; efforts towards calculating the linear 
stability, both theoretically and experimentally, using a vibrating-ribbon technique, 
are currently in progress. One might note in passing that, even though the profiles 
become increasingly inflectional with increasing vortex Reynolds number, i t  is not 
possible to make any statements concerning the stability based on Rayleigh’s 
theorem, since that result is only valid for a bounded two-dimensional flow; however, 
Rayleigh’s theorem does lead one to suspect that, at least for sufficiently high vortex 
Reynolds numbers, one will find manifestation of dynamical instability. 

5.  Conclusion 
An extraordinarily simple solution to the full Navier-Stokes equations has been 

found for the case of a diffusing, initially potential vortex (Oseen vortex), aligned 
with the stream, and imbedded i.\”zn infinite linear shear flow. The solution 
potentially can be used as a tool for experimental work on vortex structures, although 
the solution should not be considered valid far away from the vortex centreline. 
Strongly inflectional streamwise velocity profiles for even relatively modest circula- 
tions raise the question of stability; as vortical structures are observed in turbulent 
boundary layers, this question might prove to be of some importance. Efforts directed 
towards its solution are currently underway. 

The authors gratefully acknowledge the support of NSF-MEA81-21067, and the 
NSF Graduate Fellowship Program, which provided much of the support for Mr 
Pearson. 
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